The mammalian auditory hair cell: a simple electric circuit model.
نویسندگان
چکیده
A model based on the potassium current pathway through the hair cell is used to analyze the electrical behavior of mammalian inner and outer hair cells. Without taking into account the effects of calcium it is possible to simulate experimental results concerning the shape and strength of the receptor potential and the frequency dependent ac (alternating current) and dc (direct current) components of the receptor current. This model and a simplified form of it are utilized to explain: (1) Transduction latencies: that the receptor potential follows a stimulating signal with a very short delay, under the assumption of a constant number of open K+ channels in the lateral part of the cell membrane. (2) Transduction gains: why higher potential changes are measured in inner hair cells than in outer hair cells, although the outer hair cells are expected to be exposed to higher stereociliary motions: in inner hair cells a decrease in the conductance of the basolateral membrane causes higher gain (receptor potential increases) and together with an increase of membrane capacitance slower reaction (a larger time constant). (3) Transduction channel kinetics: that the shortest (0.1 ms) as well as the longest (20 ms) possible open times of the transduction channels in the stereocilia have different frequency related effects on the shape of the receptor potentials.
منابع مشابه
Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article
The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...
متن کاملOuter hair cell piezoelectricity: frequency response enhancement and resonance behavior.
Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based o...
متن کاملLarge Lithium Polymer Battery Modeling for the Simulation of Hybrid Electric Vehicles Using the Equivalent Circuit Method
In the present study, a model of a large Lithium Polymer (Li-Po) battery for use in the simulation of Hybrid Electric Vehicles (HEVs) is developed. To attain this goal, an Equivalent Circuit (EC) consisting of a series resistor and two RC parallel networks is considered. The accuracy and the response time of the model for use in an HEV simulator are studied. The battery parameters identifica...
متن کاملAdaptation of Mammalian Auditory Hair Cell Mechanotransduction Is Independent of Calcium Entry
Adaptation is a hallmark of hair cell mechanotransduction, extending the sensory hair bundle dynamic range while providing mechanical filtering of incoming sound. In hair cells responsive to low frequencies, two distinct adaptation mechanisms exist, a fast component of debatable origin and a slow myosin-based component. It is generally believed that Ca(2+) entry through mechano-electric transdu...
متن کاملAn Analogue VLSI Implementation of the Meddis Inner Hair Cell Model
The Meddis inner hair cell model is a widely accepted, but computationally intensive computer model of mammalian inner hair cell function. We have produced an analogue VLSI implementation of this model that operates in real time in the current domain by using translinear and log-domain circuits. The circuit has been fabricated on a chip and tested against the Meddis model for (a) rate level fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 103 3 شماره
صفحات -
تاریخ انتشار 1998